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Abstract

Marine Protected Areas (MPAs) are an essential instrument for marine conservation,
aimed at promoting the sustainable use of marine resources. In this study, we examine
the dynamics and behavior of industrial fishing vessels in relation to MPAs, leveraging
extensive global fishing data. Using a regression discontinuity design, we evaluate vessel
compliance by analyzing their presence within MPAs through Automatic Identification
System (AIS) data and satellite imagery. The main findings indicate that MPAs signifi-
cantly reduce industrial fishing activity within their boundaries, with a more pronounced
reduction observed in MPAs with higher levels of fishing protection. These findings hold
true when using both satellite imagery and AIS data. Differences arise when focusing
on regions such as Indonesia, the Horn of Africa, and the Central Caribbean, regions
characterized as a hotspot for piracy events, good fishing conditions, and consequently,
non-publicly tracked vessels. We also find that fishing efforts decrease within less pro-
ductive MPAs, while no significant effects are observed in the more productive ones.
Additionally, larger MPAs and those located farther from piracy-prone regions are more
effective in controlling fishing activity.
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1 Introduction

The depletion of marine resources has been a persistent concern in contemporary global biodi-

versity conservation debates and marine ecosystem preservation efforts (Herbert-Read et al.,

2022, Lotze, 2021). Marine ecosystems have played a crucial role in combating global warm-

ing through carbon sequestration (Watson et al., 2020, DeVries et al., 2017) and regulating

the planet’s temperature (Griffis and Howard, 2013), as well as promoting sustainability that

ensures food security (Ovando et al., 2023, Jefferson et al., 2022). However, sustainability in

the use of these resources has not been a global characteristic. According to FAO (2022), the

fraction of fishery stocks within biologically sustainable levels was 90% in 1974, but decreased

to 64.5% by 2019. This decline is associated with the fact that 16 out of 18 FAO regions

experience overfishing (Englander et al., 2023). These estimates, though concerning, may be

even more alarming given that they are often considered to be underestimated (Pauly and

Zeller, 2016, Watson and Pauly, 2001), highlighting the importance of using more transparent

data for accurately assessing ecosystem sustainability.

Marine Protected Areas (MPAs) have played a significant role in global conservation ef-

forts by limiting human use and restricting extractive processes (Ward et al., 2022). These

conservation tools have been implemented worldwide with the goal of promoting the pro-

tection of important habitats and ecosystems (Bank, 2006). MPAs have proven effective in

restoring marine biodiversity and improving habitat quality (Roberts et al., 2001), increase

the growth rate of fish populations (Rising and Heal, 2014), protecting endangered species

(Pauly et al., 2002), and delivering a range of socioeconomic benefits associated with their

successful implementation (Di Cintio et al., 2023, Rodŕıguez-Rodŕıguez et al., 2015).

According to UNEP-WCMC and IUCN (2021), by 2020, 7.7% of the global marine area

was protected under the designation of MPAs, compared to only 0.5% in 2000. This rapid

increase in recent years is due to the commitment of countries and international organizations

to promote global conservation. The Convention on Biological Diversity’s Aichi Target 11

called for designating 10% of marine areas as MPAs by 2020, later reinforced by Goal 14

(’Life Below Water’) of the UN Sustainable Development Goals, and the recent proposal

outlined in the Kunming-Montreal Global Biodiversity Framework, which urges countries to

ensure that by 2030 at least 30% of coastal and marine areas are effectively conserved and

managed (Andradi-Brown et al., 2023, Dinerstein et al., 2019).

MPAs have proven to be a crucial and effective conservation tool in preserving marine

conservation objectives, particularly when properly implemented and managed (Ward et al.,

2022, Edgar et al., 2014). However, their effectiveness is not solely guaranteed by their

establishment; it heavily depends on effective administration, as well as robust monitoring

and enforcement mechanisms, to ensure their success (Gill et al., 2017, Edgar et al., 2014).

Ensuring that MPAs are adequately implemented is essential, given the growing concern over

the rise of “paper parks”—protected areas that exist in name only, with minimal enforcement
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or management (Di Cintio et al., 2023, Rife et al., 2013). Such MPAs can undermine the

credibility of marine protection efforts and may even impede the creation of additional MPAs

if it appears that sufficient area expansion has already been achieved on paper (Di Cintio

et al., 2023, Kroner et al., 2019). The rapid increase in MPA designations has also generated

tensions between conservation goals and the economic interests of fishery-dependent nations,

as protecting biodiversity could potentially harm their economies (McDonald et al., 2024).

The significance of MPAs in promoting conservation, along with the various economic

and environmental implications of their effectiveness, underscores the importance of ensuring

that MPAs are truly meeting their intended purposes. Likewise, it highlights the need to

transparently understand fishermen’s behavior and identify the factors that contribute to the

proper implementation of MPAs, ensuring they achieve their conservation objectives. For this

reason, this study aims to evaluate the effectiveness of MPAs in regulating fishing activities

within their boundaries on a global scale, using comprehensive and transparent data, to assess

whether a significant sample of existing MPAs are fulfilling the conservation goals for which

they were established.

In this paper, we evaluate the effectiveness of MPAs in reducing industrial fishing activity

within their boundaries and analyze the behavior of vessels around Marine Protected Areas

by utilizing vessel detection data from satellite imagery and Automatic Identification System

(AIS) data. To achieve this, we employ causal inference techniques and econometric methods

that allow us to capture the causal effect of MPAs on industrial activity at a global scale.

We propose a regression discontinuity design that accounts for both observable and unobserv-

able characteristics, which, if left unaccounted for, could introduce bias into the estimates.

The identification strategy consists of comparing grid cells just inside and outside the MPA

borders, exploiting the discontinuity associated with the boundaries of the protected areas1.

Considering the richness of the data used, we also explore the heterogeneities driven by vary-

ing levels of fishing restrictions. Furthermore, to deepen our understanding of fishermen’s

motivations, we assess the relationship between industrial fishing activity within MPAs and

observable characteristics such as MPA size, distance to the shore, ports, and piracy events;

and fishing conditions.

Based on the results, we can conclude that MPAs have been effective in reducing industrial

fishing activity within their boundaries, despite some ongoing activity inside. Evidence of edge

effects is found, where fishermen exploit the spillover benefits produced by the conservation

of protected areas (Ziegler et al., 2022, Ohayon et al., 2021, Cuervo-Sánchez et al., 2018, Russ

et al., 2003). The effectiveness of MPAs holds across all levels of fishing protection, with

greater reductions in activity observed in areas with stricter restrictions, aligning with the

existing literature (Davis and Harasti, 2020, Harasti et al., 2019, Sala and Giakoumi, 2018,

Advani et al., 2015, Miller and Russ, 2014, Bergseth et al., 2013, Campbell et al., 2012).

1For similar analyses using this methodology, see Neal (2024), Englander (2019) and Bonilla-Mej́ıa and Higuera-
Mendieta (2019).
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We also find that there is no evidence suggesting that higher protection levels lead to better

outcomes in terms of reducing the number of both publicly and non-publicly tracked vessels.

This unexpected result is reasonable given that MPAs with stricter fishing restrictions do not

significantly reduce the number of vessels entering but do decrease the total fishing hours

conducted within their boundaries. This suggests that vessels may still enter, but the greater

enforcement effectiveness reduces the amount of time they spend fishing inside. These results

are also in line with theoretical predictions.

As suggested in the literature, enforcement is typically more effective closer to shore and

ports (Albers et al., 2020). In this regard, we find that MPAs closer to the shore are indeed

more effective in reducing fishing activity within their boundaries compared to those farther

away, particularly in terms of the number of vessels. These results remain consistent when

using SAR data. Additionally, MPAs located closer to ports show a greater reduction in

fishing activity, both when detected through SAR and AIS data. Notably, these reductions

are even larger than those related to shore distance. In terms of MPA size, we observe that

larger MPAs are effective in reducing fishing activity within their boundaries, both in terms of

total fishing efforts and the number of vessels entering. This result suggests that, despite the

greater difficulty in monitoring and enforcement associated with larger MPAs, the managing

institutions have been effective in overseeing these larger areas.

Furthermore, considering that fishers operate where fish stocks are more abundant, we

find that fishing efforts decrease within MPAs with poor fishing conditions or those that had

favorable conditions for only one year—in other words, the less productive MPAs. In contrast,

no significant effects are observed in MPAs with favorable fishing conditions for at least two

of the three years (2017–2019), meaning the more productive MPAs. Finally, we find no

significant effects in MPAs near regions with high piracy prevalence, except for the number

of vessels detected using SAR data. In contrast, for MPAs farther from piracy-prone regions,

their effectiveness in controlling fishing activity is evident.

This article contributes to the literature in several ways. First, it provides empirical evi-

dence through causal inference techniques regarding the global effectiveness of MPAs, using

a comparable measure of levels of fishing protection across them. The findings support that

MPAs with higher levels of protection yield better outcomes in terms of achieving their con-

servation objectives (Davis and Harasti, 2020, Harasti et al., 2019, Sala and Giakoumi, 2018,

Advani et al., 2015, Miller and Russ, 2014, Bergseth et al., 2013, Campbell et al., 2012).

Second, it advances the literature by utilizing a combination of AIS data and satellite im-

agery to provide the most transparent evidence possible on industrial fishing activity within

MPAs, reducing the bias that might result from data manipulation in the assessment of MPA

effectiveness (Pauly and Zeller, 2016, Watson and Pauly, 2001). And third, it contributes

to the research on fisher compliance behavior (Bos, 2021, Diekert et al., 2021, Nøstbakken,

2008) by exploring the relationship between observable factors such as MPA size; distance
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to the shore, ports, and piracy events, as well as fishing conditions, and their influence on

compliance levels within MPAs at global level.

The most closely related work to this study is a working paper by Burgess et al. (2019),

which evaluates the global effectiveness of MPAs, analyzes the general equilibrium effect

of MPAs on catch quantities and fish prices, and also proposes a theoretical model of the

economics of conservation. Although this paper examines the same conservation instrument

and uses some of the same Global Fishing Watch (GFW) data as in this study, there are

key differences. First, we include data from satellite imagery in addition to AIS information,

which can be manipulated by fishers (Welch et al., 2022). Second, we use a distinct database of

protected areas, allowing for evidence focused on different levels of fishing protection. Third,

we aim to explore potential factors explaining changes in fisher compliance.

The findings of this article suggest that MPAs are an effective tool in the fight against

overfishing. Proper management and the appropriate use of monitoring and control tools play

a crucial role in the effectiveness of MPAs. Although conservation restricts fishing activity

in the short term, greater conservation creates medium-term incentives that help preserve

and increase the availability of fish stocks for fishing. Additionally, the results of this article

underscore the importance of using increasingly reliable and accurate data to improve the

evaluation of conservation instruments, particularly in the marine context. Misuse or lack of

data availability could lead to erroneous conclusions, potentially undermining conservation

efforts. Furthermore, the study highlights the importance of effective enforcement in ensuring

compliance with the conservation objectives of MPAs.

The rest of the article is organized as follows. Section 2 describes the data sources and

presents descriptive statistics. Section 3 outlines the empirical model used. Section 4 presents

the main results for MPAs, differentiating by levels of protection. The findings on the relation-

ship between law enforcement and MPA effectiveness are discussed, along with an assessment

of key determinants such as piracy and biological fishing conditions. Finally, section 5 con-

cludes the article.

2 Data

Accurate and unbiased data are crucial for effective policy evaluation. This article examines

fishing vessel compliance with regulations governing MPAs, emphasizing the need for data

that prioritizes detection over fishing impacts. While much of the existing literature focuses

on the effects of fishing activities—such as overexploitation—on marine ecosystems using

stock and catch data (Marcos et al., 2021, Harasti et al., 2019, Gill et al., 2017, Ahmadia

et al., 2015, Kelaher et al., 2015), these data sources are often limited and susceptible to

manipulation (Pauly and Zeller, 2016, Watson and Pauly, 2001).

The growing availability of spatial data has greatly improved our understanding of global
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fishing dynamics (Paolo et al., 2024, Bos, 2021, Englander, 2019, Kroodsma et al., 2018).

This data provides more reliable insights and extensive coverage, overcoming past limitations.

However, not all data is equally resistant to manipulation. To evaluate the effectiveness of

MPAs, this study uses two sources of fishing activity data, one more prone to manipulation

than the other, to enhance reliability. The first source is data from Automatic Identification

System (AIS) signals, which transmit vessel positions and help identify fishing activities and

efforts (Kroodsma et al., 2018). The second is Synthetic Aperture Radar (SAR) from data

sources like Sentinel, which identifies vessel locations, especially in coastal waters (Paolo et al.,

2024). AIS data can be manipulated by disabling transmitters, limiting its reliability, while

SAR data overcomes this issue and serves as an alternative to nighttime light data from VIIRS

sensors, which are restricted to nighttime observations and affected by cloud cover (Hsu et al.,

2019, Park et al., 2020).

For this study, we compiled a global database of ocean activity using AIS and satellite

data at a 0.1-degree resolution for coastal waters from 2017 to 2019. The dataset also includes

climatic, biological, and biophysical information for each coastal grid2.

2.1 AIS Fishing Activity Data

The Automatic Identification System (AIS) was originally designed to prevent vessel collisions

by transmitting location, identity, speed, and heading to nearby ships. However, the use of

AIS data has become increasingly important for monitoring fishing activity due to its ease

of collection, accessibility, and comparability (Bos, 2021). After processing with machine

learning techniques, AIS data allows for the prediction of vessel types and the number of

fishing hours at each location with a resolution of 0.01 degrees (Kroodsma et al., 2018).

Figure 1 displays fishing efforts measured as the number of fishing hours by vessels within

a given grid between 2017 and 2019 (Panel A) and the number of vessels detected (Panel

B). Regions with higher detected fishing activity include Northern Europe, the East China

Sea, the Australasian Pacific, and southern Africa around Madagascar. Conversely, areas

with lower detected activity, possibly due to lower actual activity or under-detection via AIS

data, include waters south of China, the territorial waters of Malaysia, Indonesia, and the

Philippines, the Horn of Africa, the Gulf of Aden, and parts of Central America and the

Caribbean. These regions, despite showing less activity, have a known history of significant

fishing, suggesting under-detection rather than reduced activity.

2.2 SAR Fishing Activity Data

We employ data on industrial activity detected through the use of Synthetic Aperture Radar

(SAR) imagery provided by Global Fishing Watch (GFW), which utilizes data from the

Copernicus Sentinel-1 mission of the European Space Agency (ESA) (Paolo et al., 2024).

2Coastal waters refer to territorial waters within each country’s Exclusive Economic Zones (EEZ).
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(a) Fishing Efforts

(b) Vessel detections

Figure 1. Fishing activity using AIS data. Source: Authors’ calculations based on data from GFW. Note:
Panel A presents the cumulative fishing hours between 2017 and 2019. Panel B shows the number of vessels
detected via AIS between 2017 and 2019. Observations are aggregated to a 1km resolution grid for each EEZ.
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This information allows us to obtain less manipulable data on the presence and activity within

marine protected areas. While AIS data has been a major advancement in monitoring oceanic

activity, the possibility of signal transmitters being altered or disabled makes measurements

based on this information less reliable. The use of satellite imagery provides less manipulable

data, enabling us to complement the evaluation of the dynamics of vessels within protected

areas. Moreover, in comparison to the detection of vessels through nocturnal light sources,

SAR imagery offers broader coverage, extending beyond nighttime activities.

Figure 2 illustrates the extent of industrial activity detected in global coastal areas during

the 2017–2019 period. Panel A shows the tracked activity linked to Maritime Mobile Service

Identities (MMSI), which are identifiers associated with AIS transmitters. In contrast, Panel

B depicts vessels detected without corresponding MMSI, meaning those vessels are not visible

in publicly accessible AIS data. This concept is often referred to as “unseen vessels” (Welch

et al., 2022) or “non-publicly tracked vessels” (Paolo et al., 2024). When comparing Figure 1

and Figure 2, we can observe that SAR data complements the information on fishing activity

derived from AIS data. Specifically, SAR data reveals additional information compared to

AIS data in regions such as Indonesia, the Horn of Africa, and the Central Caribbean.

One of the main limitations of SAR data is that its detection effectiveness is concentrated

in coastal areas. While this is not an issue for our analysis, which focuses on global Exclusive

Economic Zones (EEZs), no information is obtained for the EEZs of very small territories,

such as Pacific islands. Additionally, the detection capacity is determined by the resolution

of the images, approximately 20 meters for Sentinel-1, which prevents the detection of vessels

smaller than 15 meters in length. As a result, this analysis focuses on industrial fishing, given

the limitations in detecting artisanal fishing vessels, which also often lack AIS devices.

2.3 Comparing AIS Fishing Efforts and SAR vessels detections

The two databases utilized contain information on industrial activity at sea. The primary

distinction between them lies in the potential for manipulation by fishers. In the case of

AIS data, it is known that vessels have the ability to turn off their devices. In contrast, the

information obtained from satellite imagery eliminates this manipulation bias, allowing for

cleaner data on oceanic activity (Paolo et al., 2024).

As previously mentioned, the combination of these two databases serves as complementary,

enabling a more comprehensive analysis of vessel presence and, in turn, the effectiveness of

MPAs on a global scale. Figure A1 shows the correlation between the two primary measures

from AIS and SAR data, where a significant relationship between the two is observed. A 1%

increase in the number of vessels detected via SAR is associated with a 0.13% increase in the

estimated number of fishing hours derived from AIS data (Table A3), estimate that aligns

with that obtained by Bos (2021) using VIIRS data in China.
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(a) Vessels detected publicly tracked

(b) Vessels detected no-publicly tracked

Figure 2. Fishing activity using SAR data. Source: Authors’ calculations based on data from GFW. Note:
Panel A presents the number of vessels detected via SAR that could be tracked alongside AIS data between
2017 and 2019. Panel B shows the number of vessels detected via SAR that could not be tracked alongside
AIS data between 2017 and 2019. Observations are aggregated to a 1km resolution grid for each EEZ.
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2.4 Marine Protected Areas

The delimitation of the Marine Protected Areas was conducted using the Marine Managed

Areas to Protect Marine Life database provided by ProtectedSeas. This dataset includes both

federal and state-level data obtained through internet searches and downloads from official

sources. In addition to providing the boundaries of the MPAs, this database allows us to

obtain a comparable measure of the protection level of each MPA. We utilized a dataset as

of 2023, focusing on MPAs stated in the dataset as established before 2017, which possess a

WDPAID code and are located within Exclusive Economic Zones (EEZs). Figure 3 presents

the map of the MPAs considered in the study (Panel A) and the coverage of protected areas

within each EEZs (Panel B).

The significance of the ProtectedSeas database lies in its proposal of a specialized coding

system for categorizing the restrictions related to fishing activity. This measure includes five

categories: Least restrictive (=1), no known fishing restrictions; Less restrictive (=2), few

species- or gear-specific restrictions apply; Moderately restrictive (=3), several species- or

gear-specific restrictions apply, or either commercial or recreational fishing is entirely pro-

hibited; Heavily restrictive (=4), fishing is mostly prohibited, with few exceptions; and Most

restrictive (=5), fishing is completely prohibited.3 When referring to fishing bans, it primar-

ily pertains to artisanal fishing, as in principle, every MPA should restrict industrial fishing

activity within its boundaries (Day et al., 2019). This system enables a more transparent and

comparable characterization of the protection level of MPAs.

2.5 Climate and Biological Variables

Finally, we include climatic and biological variables as control variables. The data were

compiled at the grid level with a resolution of 0.1 degrees, based on the data reported by

MODIS Aqua Ocean Color Data (NASA Goddard Space Flight Center and Group, 2018).

The biological variables used are chlorophyll concentration and the phytoplankton absorption

coefficient, in line with related literature (Bos, 2021, Axbard, 2016, Flückiger and Ludwig,

2015). Sea surface temperature is used as the climatic variable. No additional variables are

considered due to the high likelihood of multicollinearity (Bos, 2021).

Figure 4 presents the distribution of biological and climatic measures by grid for the period

2017–2019. Panel A shows the data for sea surface temperature, Panel B displays chlorophyll

concentration, and Panel C presents the phytoplankton absorption coefficient rescaled to

range between 0 and 100.

3For further details on the methodology, see ProtectedSeas Methodology
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(a) Geography of Marine Protected Areas by levels of protection

(b) Marine Protected Areas Coverage

Figure 3. Marine Protected Areas Map. Source: Author, using information from Protected Seas and Marine
Regions Repository. Note: Panel A shows the distribution of MPAs established before 2017 that are located
within EEZs, and also displays the distribution according to the level of fishing protection based on the
measurement by Protected Seas. Panel B shows the proportion of each EEZ’s area that is protected by MPAs.
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(a) Sea surface temperature

(b) Chlorophyll concentration

(c) Phytoplankton absorption coefficient

Figure 4. Climate and biological variables. Source: Authors’ calculations based on data from MODIS and
Marine Regions Repository. Note: Observations are aggregated to a 1km resolution grid for each EEZ. Panel
A shows the average sea surface temperature in degrees Celsius for each grid between 2017 and 2019. Panel
B shows the average chlorophyll concentration for each grid between 2017 and 2019. Panel C presents the
average phytoplankton absorption coefficient, rescaled between 0 and 100, for the period 2017-2019 for each
grid.
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2.6 Descriptive Statistics

Table 1 presents the descriptive statistics of the main variables in dataset for the period

2017–2019. On average, 746.5 fishing hours per 1,000 km2 in period 2017-2019 were ob-

served, with the presence of approximately 743 vessels. Based on SAR data, 53 publicly

tracked vessels were detected per 1,000 km2, along with an average of 22.4 non-publicly

tracked vessels. Additionally, the table provides descriptive statistics for biological variables,

including chlorophyll concentration and phytoplankton absorption (x100), as well as the cli-

matic variable sea surface temperature, alongside time-invariant variables characterizing each

grid in the dataset. Additional descriptive statistics for each protection level of the MPAs are

presented in Table A1.

Table 1: Descriptive statistics

N Mean Std.Dev Min 50% Max

Outcome variables
Fishing Hours per 1000 km2 1,585,595 746.5 9,151 0 0 1,254,260
Vessels detection using AIS per 1000 km2 1,585,595 743.4 8,623 0 9.52 1,693,629
Unique Vessels detection using AIS per 1000 km2 1,585,595 213.8 1,134 0 9.17 139,692
Vessels detection using SAR per 1000 km2 1,585,595 52.99 517.0 0 0 73,163
Unique Vessels detection using SAR per 1000 km2 1,585,595 52.99 517.0 0 0 73,163
Unseen vessel detection using SAR per millon km2 1,585,595 22.41 203.0 0 0 24,926
Pr(Unseen vessel detection using SAR) 1,585,595 0.14 0.34 0 0 1

Climate and biological variables
Sea surface temperature (°C) 1,517,276 15.25 11.45 -1.8 16.12 37.72
Chlorophyll concentration 918,075 0.86 2.03 0.002 0.29 81
Phytoplankton absorption 913,917 1.36 2.26 0.004 0.79 100

Grid characteristics
Distance to MPAs boundary (km) 1,585,595 490 706 3,572 238 396
Distance to Ports (km) 1,585,595 687 932 0 334 4,741
Distance to shore (km) 1,585,595 160 118 0 147 909
Distance to Seamounts (m) 1,585,595 328,873 398,577 77.32 159,043 2,651,093
Distance to P̈ıracy events (m) 1,585,595 1,948,268 1,684,356 381 1,527,201 6,416,163
Depth (m) 1,585,595 -1,682 1,216 -7,051 -1,551 -2

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: The observations
refer to data from each 0.1-degree resolution grid. The grid characteristics variables are time-invariant, while
the outcome and environmental variables correspond to the average for period from 2017 to 2019.

3 Empirical Model

A growing body of research has studied the effects of MPAs on conservation objectives.

However, within the framework of analysis of this relationship, empirical difficulties arise

related to the assignment of MPAs, which are not randomly assigned, but whose designation

is determined by a series of observable variables. This means that comparisons between points

located outside and inside the MPAs lead to biased estimates. Some works have attempted
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to deal with this identification problem using matching methods designed to strike a balance

in the sample through the observed variables of the characteristics of ecosystems, oceans, and

MPAs (Ahmadia et al., 2015, Gill et al., 2017). Although this method solves the problems

conditional on the observable variables, it leaves out unobservable characteristics that are

also determining factors and that can lead to bias in the estimates.4 Other works have been

conducted using other methodologies; however, these fail to capture causal effects (Harasti

et al., 2019, Davis and Harasti, 2020).

To address the problem of bias, we employ a Regression Discontinuity Design, which re-

strict the sample to observations closest to the MPA borders. To this end, the observations

that are within an MPA will be taken as the treatment group, while the control group will

consist of those grids just outside the MPA. Each grid counts information on industrial fishing

activity (Table 1). The effect is estimated using the model proposed by Calonico et al. (2014),

which selects the optimal bandwidth (η) and computes the conditional mean difference be-

tween grids located inside (y1i ) and outside (y0i ) of protected areas right at the boundary zo

(Eq. 1). To assess the robustness of the estimates, we re-estimate the model using three ap-

proaches: the optimal bandwidth, a fixed bandwidth of 50 km (which, on average, represents

12.6% of the maximum distance within the MPAs), and a donut hole approach that excludes

a 2 km buffer zone around the MPA borders. The parameter of interest, τ , captures the

average effect on global fishing activity per 1,000 km2 during the study period 2017 - 2019.

τ = lim
η→0

E(yi|zi = z0 + η)− lim
η→0

E(yi|zi = z0 − η)

= lim
η→0

E(y1i |zi = z0 + η)− lim
η→0

E(y0i |zi = z0 − η)

= E(y1i − y0i |zi = z0)

= τz0

(1)

All regressions control for depth, sea surface temperature, Chlorophyll concentration,

Phytoplankton absorption coefficient, distance to the shore, distance to ports, distance to

piracy events, and distance to seamounts, and it is also controlled by a polynomial of order

k of the distance to the MPA border. A linear polynomial will be used to avoid issues

associated with higher-order polynomials, such as sensitivity to polynomial order and overly

narrow confidence intervals (Gelman and Imbens, 2019).

The main assumption of the model is that confounders vary smoothly at the cutoff (Eq.

2), which we test using the permutation test of continuous distribution of covariates proposed

by Canay and Kamat (2018).

4Additionally, for the analysis carried out here, there is not enough availability of variables with high resolution
that are decisive in explaining why an area is designated as an MPA, which is necessary to be able to consider
the application of matching methods such as Propensity Score Matching (PSM).
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lim
η→0

E(yji |zi = z0 + η) = lim
η→0

E(yji |zi = z0 − η) para j ∈ 1, 0 (2)

The results of the permutation test are presented in Table 2 (Table A2 presents test by

levels of protections). Most tests fail to reject the null hypothesis of continuously distributed

covariates at the cutoff, suggesting that the results obtained through the use of regression

discontinuity can be considered causal.5

Table 2: Continuous distribution of baseline marine characteristics at MPAs borders

Treatment Control Permutation test
Mean Std.Dev Mean Std.Dev t-test p-value

Sea surface temperature (°C) 15.15 10.86 15.26 11.51 0.04 0.28
Chlorophyll concentration 0.75 1.99 0.87 2.03 0.04 0.29
Phytoplankton absorption 1.16 1.48 1.38 2.33 0.09 0.06
Depth (m) -1718.42 1184.65 -1677.81 1218.67 0.05 0.24
Distance to Shore (km) 176.45 125.87 158.46 116.63 0.04 0.28
Distance to Ports (km) 832.57 893.86 672.03 934.77 0.12 0.02
Distance to Seamounts (km) 180.6 218.0 344.2 409.7 0.02 0.72
Distance to Piracy Events (km) 2119.2 1208.7 1930.6 1725.0 0.03 0.4
Joint test 0.16 0.08

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Columns 1-4 present the
descriptive statistics of cells of the nearest MPA boundary. The columns 5-6 presents the test statistic and
p-value of the Canay and Kamat (2018) permutation test of continuous distribution of covariates at the cutoff.

We estimate the heterogeneous effects of MPA size, distance to the coast and ports, as

well as distance to piracy events and biological fishing conditions. These estimates serve as an

approach to understanding the relationship between law enforcement and MPA effectiveness,

as well as to gain insights into some of the motivations behind fishers’ decision-making on

where to fish. These estimates are conducted using separate non-parametric regressions.

4 Results

In this section, we present the results on the effectiveness of MPAs in reducing fishing activity

within their boundaries. We consider different levels of fishing protection to assess whether

stricter restrictions enhance effectiveness. Additionally, we analyze how observable factors

such as MPA size, distance to shore, ports, piracy events, and fishing conditions influence

MPA effectiveness and fisher compliance.

Table 3 presents the results of the estimation of the effect of MPAs on industrial fish-

ing activity, measured using AIS data. For each outcome variable, estimates are provided

using the optimal bandwidth, fixed bandwidth, and the donut hole approach. Additionally,

5The results for MPAs with protection levels of 4 should be interpreted with caution, as the joint test rejects
the null hypothesis of continuously distributed covariates at the cutoff (Table A2).
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conventional, bias-corrected, and robust estimates as proposed by Calonico et al. (2014) are

reported.

Figure 5 illustrates the findings, showing that, on average, fishing activity increases near

the borders and decreases significantly within the MPAs. The increase in fishing activity

along the edges of MPAs has been well documented in the literature (Ohayon et al., 2021,

Cuervo-Sánchez et al., 2018, Russ et al., 2003), and in many cases, this pattern does not

emerge until more than seven years after the implementation of MPAs (Ziegler et al., 2022).

This explains the findings of McDonald et al. (2024), whose results suggest that MPAs do

not displace fishing efforts in the early years following their establishment. Meanwhile, the

fishing activity detected within the MPAs follows a strategic pattern, with effort decreasing as

the distance into the protected area increases. This suggests that fishers weigh the potential

benefits of fishing inside the MPAs against the likelihood of being caught, which increases

with greater distances, as they require more time to exit the area. This dynamic is observed

across most of the outcome variables analyzed and for various levels of protection, with the

effect being more pronounced in MPAs with lower levels of protection (Figure 6).

Considering this strategic behavior, our preferred specification is the conventional esti-

mate with a donut hole approach to reduce the potential interdependence of observations

inside and just outside the MPA boundaries. MPAs are established to conserve biodiver-

sity and ecosystems within their designated areas. If successful, they increase the available

biomass, which, assuming species mobility, leads to biomass spillover beyond the protected

areas, increasing fish availability for legal fishing (Cuervo-Sánchez et al., 2018). However, if

more vessels decide to fish within MPAs, the available fish stock outside the protected area

decreases, creating incentives to increase fishing efforts both outside (to maintain at least con-

stant catches) and inside the MPA due to lower availability beyond its borders. By removing

the observations closest to the boundary (donut hole), this interdependence is expected to

decrease. Nevertheless, other estimates are included for the sake of transparency.

According to the results reported in Table 3, MPAs reduce the number of vessels detected

within their boundaries by 278.8 vessels per 1,000 km². In terms of fishing effort, MPAs

are also effective in reducing total fishing hours within their boundaries by 712.3 hours per

1,000 km². However, note that at the optimal bandwidth, the strong interdependence among

observations explains the lack of statistical significance. This result is linked to the strategic

behavior of vessels around MPA borders, which influences the distribution of fishing effort

across different areas.

To validate the sensitivity of the results, we estimate the regressions for bandwidths

ranging from 5km to 50km, and the coefficients are consistent and remain negative (Figure

A6). Additionally, as an extra robustness check, we run the regressions using a placebo for

the MPA boundary, and it is observed that the negative and significant effect is concentrated

around the true cutoff point (Figure A7).
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Table 3: Regression discontinuity effect of MPAs on Fishing activity using AIS data

Fishing Hours per 1000 km2 Vessels detection using
AIS per 1000 km2

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

(1) (2) (3) (4) (5) (6)

Conventional -445.9 -1,005.2*** -712.3** -180.7*** -366.6*** -278.8***
(281.8) (133.3) (345.9) (59.63) (23.91) ( 78.26)

Bias-corrected -364.6 -517.6*** -594.7* -159.5*** -292.2*** -251.7***
(281.8) (133.3) (345.9) (59.63) (23.91) ( 78.26)

Robust -364.6 -517.6** -594.7 -159.5** -292.2*** -251.7***
(329.3) (203.3) (402.2) (65.62) (35.40) (89.71)

Bandwidth (km) 13.84 50 12.71 8.09 50 11.73
Observations 129,194 911,869 122,201 129,194 911,869 122,201

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant
at 10%, ** at 5%, and *** at 1% level. Fishing hours is expressed in hours/km2per1000. Calonico et al.
(2014) RD estimate used with optimal bandwidth (columns 1, and 4), fixed 50 kms bandwidth (columns 2,
and 5), and 2km donut hole approach (columns 3, and 6). All regressions control for the climatic, physical
and biological variables. We present the results based on a first order local-polynomial. Standard errors in
parentheses are based on a nearest neighbor variance estimator.

Table 4 presents the results for AIS data across different protection levels of MPAs. We

observe that, regardless of the protection level, most MPAs successfully reduce fishing activity

within their boundaries. In terms of fishing effort, the magnitude of the effect increases as the

level of protection of the MPAs increases. Figure 6 visually illustrates this relationship for

fishing efforts. Figures A2 shows the RD plot for vessel detections. In terms of the number of

vessels detected, it appears visually evident that an increase in the level of fishing protection

leads to a greater reduction in fishing activity. However, in the estimations that include

controls, no significant effects are found to support this evidence.
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(a) Fishing hours (b) Fishing hours: Donut hole 2km

Figure 5. Regression discontinuity effect of MPAs on fishing activity using AIS data. Source: Authors’

calculations based on data from GFW, ProtectedSeas and MODIS. Note: The left side of the figure shows the

observations outside the MPAs, and the right side shows the observations inside the MPAs. The observations

are binned according to the data-driven procedure IMSE-optimal quantile-spaced method using polynomial

regression. The gray shading represents the confidence intervals at the 95% confidence level.
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Table 4: Regression discontinuity effect of MPAs on Fishing activity using AIS data by levels
of protection

Fishing Hours per 1000 km2 Vessels detection using
AIS per 1000 km2

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

(1) (2) (3) (4) (5) (6)

Level of protection = Least restrictive

Conventional 683.4 -885.2* 93.71 -201.9 -697.1*** -352.4*
(887.7) (473.4) (1135) (152.7) (71.04) (196.4)

Bias-corrected 960.6 203.5 514.7 -140.3 -537.7*** -251.7
(887.7) (473.4) (1135) (152.7) (71.04) (196.4)

Robust 960.6 203.5 514.7 -140.3 -537.7*** -251.7
(1024.5) (668.7) (1355) (167.3) (102) (222)

Bandwidth (km) 12.65 50 10.17 9.35 50 12.2
Observations 30,616 205,803 28,859 30,616 205,803 28,859

Level of protection = Less restrictive

Conventional -785.3** -829.8*** -1276.7** -187.4*** -115.3*** -193.9**
(359.9) (211.6) (505.6) (56.32) (33.32) (79.64)

Bias-corrected -781.2** -787.03*** -1421.6*** -204.4*** -168.2*** -216.5***
(359.9) (211.6) (505.6) (56.32) (33.32) (79.64)

Robust -781.2* -787.03** -1421.6** -204.4*** -168.2*** -216.5**
(434.3) (311.2) (608.1) (67.21) (51.18) (93.96)

Bandwidth (km) 17.69 50 16.31 20.03 50 15.57
Observations 42,428 237,240 39,827 42,428 237,240 39,827

Level of protection = Moderately restrictive

Conventional -546.2 -1121.8*** -1157.8* -26.52 -245.1*** -34.34
(552.2) (261.3) (674.3) (52.29) (26.26) (103.5)

Bias-corrected -394.03 -550.02** -1127.7* -7.24 -72.61*** 3.36
(552.2) (261.3) (674.3) (52.29) (26.26) (103.5)

Robust -394.03 -550.02 -1127.7 -7.24 -72.61* 3.36
(671.6) (419.2) (891.9) (58.47) (37.94) (119.1)

Bandwidth (km) 15.89 50 18.53 11.13 50 11.5
Observations 19,120 119,283 18,092 19,120 119,283 18,092

Level of protection = Heavily restrictive

Conventional -1055.8* -1177*** -718.7 -354.2*** -349.8*** -463.3***
(625.6) (287.4) (611.2) (90.51) (58.05) (150.3)

Bias-corrected -1137.9* -962.01*** -634.9 -359.8*** -348.7*** -493.3***
(625.6) (287.4) (611.2) (90.51) (58.05) (150.3)

Robust -1137.9 -962.01** -634.9 -359.8*** -348.7*** -493.3***
(817.5) (475.9) (756.7) (110.5) (90.14) (178.9)

Bandwidth (km) 17.20 50 11.76 23.88 50 16.38
Observations 15,927 135,959 15,154 15,927 135,959 15,154

Level of protection = Most restrictive

Conventional -1572.2** -1152.7*** -1112.3* -58.45 -180.01*** -211.9*
(710.6) (293.6) (578.9) (104.7) (50.35) (122.7)

Bias-corrected -1739.4** -1350.5*** -1156.3** -20.78 -154.4*** -200.1
(710.6) (293.6) (578.9) (104.7) (50.35) (122.7)

Robust -1739.4** -1350.5*** -1156.3 -20.78 -154.4* -200.1
(883.4) (474.6) (723.3) (123.1) (79.79) (154.9)

Bandwidth (km) 13.48 50 16.36 16.02 50 17.4
Observations 21,086 213,497 20,252 21,086 213,497 20,252

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant
at 10%, ** at 5%, and *** at 1% level. Fishing hours is expressed in hours/km2per1000. Calonico et al.
(2014) RD estimate used with optimal bandwidth (columns 1, and 4), fixed 50 kms bandwidth (columns 2,
and 5), and 2km donut hole approach (columns 3, and 6). All regressions control for the climatic, physical
and biological variables. We present the results based on a first order local-polynomial. Standard errors in
parentheses are based on a nearest neighbor variance estimator.

19

https://globalfishingwatch.org/
https://navigatormap.org/
https://oceandata.sci.gsfc.nasa.gov/opendap/MODISA/L3SMI/


(a) Least restrictive (b) Less restrictive

(c) Moderately restrictive (d) Heavily restrictive

(e) Most restrictive

Figure 6. Regression discontinuity effect of MPAs on fishing activity using AIS data by levels of protection.

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: The left side of the

figure shows the observations outside the MPAs, and the right side shows the observations inside the MPAs.

The observations are binned according to the data-driven procedure IMSE-optimal quantile-spaced method

using polynomial regression. The gray shading represents the confidence intervals at the 95% confidence level.

All graphs present the estimates following the donut hole approach with a 2km exclusion zone.
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When comparing the data from AIS and SAR, we observe a complementarity in the

analysis. The patterns described by AIS and SAR data are similar. Figure 7 illustrates

how vessel detection behaves for both data sources. In levels, on average, there is a greater

reduction in activity using AIS data (Table 3) compared to the reduction estimated using

SAR data (Table 5).

For different protection levels, Figures A3 and A4 display the RD plots for publicly and

non-publicly tracked vessels, respectively. There is no evidence suggesting that higher pro-

tection levels lead to better outcomes in terms of reducing the number of both publicly and

non-publicly tracked vessels (Table A4). As we also observed with the number of vessels de-

tected using AIS data (Table 4). This unexpected result is reasonable given that MPAs with

stricter fishing restrictions do not significantly reduce the number of vessels entering but do

decrease the total fishing hours conducted within their boundaries. This suggests that vessels

may still enter, but the greater enforcement effectiveness reduces the amount of time they

spend fishing inside. One possible explanation is that vessels might have stronger incentives

to enter highly restricted MPAs, perhaps due to higher fish stocks; however, we lack data to

support this hypothesis.

Table 5: Regression discontinuity effect of MPAs on Fishing activity using SAR data

Vessels detection using
SAR per 1000 km2

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

(1) (2) (3)

Conventional -60.05 -190.1*** -236.2***
(37.30) (13.25) (28.87)

Bias-corrected -46.05 -187.5*** -247.3***
(37.30) (13.25) (28.87)

Robust -46.05 -187.5*** -247.3***
(40.57) (19.87) (34.50)

Bandwidth (km) 6.21 50 19.13
Observations 129,194 911,869 122,201

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant at
10%, ** at 5%, and *** at 1% level. Calonico et al. (2014) RD estimate used with optimal bandwidth (columns
1), fixed 50 kms bandwidth (columns 2), and 2km donut hole approach (columns 3). All regressions control for
the climatic, physical and biological variables. We present the results based on a first order local-polynomial.
Standard errors in parentheses are based on a nearest neighbor variance estimator.

Another possible explanation relates to the levels of fishing activity. As shown in Table A1,

least restrictive MPAs exhibit, on average, higher fishing activity compared to most restrictive

MPAs. When evaluating the extensive margin, i.e., the probability of detecting at least one
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non-publicly tracked vessel inside an MPA, we find that most restrictive MPAs reduce this

probability by 14 percentage points (pp), whereas least restrictive MPAs reduce it by only 2

pp—although this result is not statistically significant.

(a) Vessel detection: AIS (b) Vessel detection: SAR

Figure 7. Regression discontinuity effect of MPAs on fishing activity comparing AIS and SAR data. Source:

Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: The left side of the figure

shows the observations outside the MPAs, and the right side shows the observations inside the MPAs. The

observations are binned according to the data-driven procedure IMSE-optimal quantile-spaced method using

polynomial regression. The gray shading represents the confidence intervals at the 95% confidence level.

In general, for vessels not publicly tracked using SAR data, we observe that MPAs have

been effective in reducing this type of “in the dark” activity (Park et al., 2020). Table

6 presents the results for the number of no-publicly tracked vessels and the likelihood of

encountering such vessels. The estimates for the number of no-publicly tracked vessels are

robust, indicating that MPAs have reduced this activity by approximately 31 vessels per km2.

However, when assessing the probability of finding at least one non-publicly tracked vessel

within MPAs, we find that it increases by approximately 2 pp. This suggests that MPAs

reduce fishing intensity in terms of the number of non-publicly tracked vessels within their

boundaries. However, it is still more likely to find at least one non-publicly tracked vessel

inside MPAs than outside. When analyzing these results by protection level, we observe that

this outcome is driven by less restrictive MPAs (Table A4).

Figure 8 shows the RD plots for no-publicly tracked vessels, while Figures A5 display the

RD plots for the probability for each protection level, respectively. In terms of probability to

find at least one non-publicly tracked vessel, it is observed that a higher level of protection

increases the likelihood of finding non-publicly tracked vessels. This is related to the fact that

greater protection means a higher probability of being caught, so vessels will have greater

incentives to turn off their transmitters in these areas to avoid detection. Additionally, in
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terms of the number of non-publicly tracked vessels, note that within MPAs, the dispersion of

the data is considerably higher compared to the data outside the MPA (Figure A4), suggesting

a greater presence inside.

Table 6: Regression discontinuity effect of MPAs on vessels detected No-Publicly tracked
using SAR data

Unseen vessel detection using
SAR per 1000 km2

Pr(Unseen vessel detection
using SAR)

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

(1) (2) (3) (4) (5) (6)

Conventional -20.61*** -26.39*** -31.00**** 0.03*** -0.02*** 0.02*
(4.45) (2.22) (5.11) (0.01) (0.005) (0.02)

Bias-corrected -19.25*** -22.69*** -31.43*** 0.03*** 0.004 0.03**
(4.45) (2.22) (5.11) (0.01) (0.005) (0.02)

Robust -19.25*** -22.69*** -31.43*** 0.03*** 0.004 0.03*
(5.15) (3.37) (6.43) (0.01) (0.007) (0.02)

Bandwidth (m) 14.02 50 16.91 8.79 50 10.56
Observations 129,194 911,869 122,201 129,194 911,869 122,201

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant at
10%, ** at 5%, and *** at 1% level. Calonico et al. (2014) RD estimate used with optimal bandwidth (columns
1, and 4), fixed 50 kms bandwidth (columns 2, and 5), and 2km donut hole approach (columns 3, and 6). All
regressions control for the climatic, physical and biological variables. We present the results based on a first
order local-polynomial. Standard errors in parentheses are based on a nearest neighbor variance estimator.

(a) Unseen Vessel detection (b) Pr(Unseen Vessel detection)

Figure 8. Regression discontinuity effect of MPAs on unseen vessels detected using SAR data. Source: Authors’
calculations based on data from GFW, ProtectedSeas and MODIS. Note: The left side of the figure shows the
observations outside the MPAs, and the right side shows the observations inside the MPAs. The observations
are binned according to the data-driven procedure IMSE-optimal quantile-spaced method using polynomial
regression. The gray shading represents the confidence intervals at the 95% confidence level.
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4.1 Law Enforcement and Marine Conservation

The ability of MPAs to reduce fishing activity within their boundaries relies on law enforce-

ment through the monitoring, control, and surveillance of protected areas (Gill et al., 2017).

In a maritime context, it is reasonable to expect that the farther a protected area is from the

shore or ports, the less effective it will be due to reduced accessibility (Edgar et al., 2014,

Advani et al., 2015); however, it is also possible that greater distance increases costs for fish-

ermen, discouraging activity in more remote MPAs. Our findings confirm that MPAs located

closer to the shore have a greater effect in reducing fishing activity within their boundaries

compared to those farther away, particularly in terms of the number of vessels (Table A5).

These results hold when using SAR data as well (Table A6).

Tables A7 and A8 present the results concerning distance to ports, which are similar

to those found for distance to the shore. MPAs that are closer to ports show a greater

reduction in fishing activity, both when detected using SAR and AIS data. Notably, the

observed reductions are even larger than those related to shore distance, which makes sense

considering that maritime operations are primarily concentrated around ports rather than

along the coastline.

Another factor that has drawn attention in the literature is MPA size (Albrecht et al.,

2021, Friedlander et al., 2017, Edgar et al., 2014, Claudet et al., 2008). Larger protected areas

may contribute to greater species and ecosystem conservation, proportional to the area’s size.

However, larger MPAs may also make monitoring and enforcement more challenging. Tables

A9 and A10 present the results based on MPA size. We find that larger MPAs are effective

in reducing fishing activity within their boundaries, both in terms of total fishing efforts and

the number of vessels entering. This result suggests that, despite the greater difficulty in

monitoring and enforcement associated with larger MPAs, the managing institutions have

been effective in overseeing these larger areas. Additionally, we find that both larger and

smaller MPAs are effective in reducing the number of non-publicly tracked vessels. However,

larger MPAs decrease the probability of encountering non-publicly tracked vessels, while in

smaller MPAs, this probability increases.

4.1.1 Piracy and Fishing Conditions zones

The decision-making process for fishers regarding where to fish is complex. However, like

any economic activity, part of this process is driven by profit maximization, which primarily

depends on maximizing catch per unit effort. Fishers seek to operate in areas with a higher

probability of encountering abundant fish stocks, depending on their target species. Evaluat-

ing this relationship between fishing activity and fish stocks presents a challenge due to the

lack of globally and temporally comprehensive data. However, the availability of environmen-

tal and biological geospatial data allows us to approximate this relationship. Axbard (2016)

proposes using satellite imagery to estimate a measure of favorable fishing conditions based
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on sea surface temperature and phytoplankton concentration, which, when within specific

thresholds, are associated with higher fish stocks as they create optimal conditions for fish

reproduction and survival.

When evaluating MPA effectiveness based on the number of years (2017–2019) a grid has

had favorable fishing conditions, we find that fishing efforts decrease within MPAs that have

not had good fishing conditions or have only had them for one year—in other words, the less

productive MPAs. In contrast, no significant effects are observed in MPAs that had favorable

fishing conditions for at least two of the three years, meaning the more productive MPAs

(Table A11).

At the same time, in the fishing decision-making process, fishers aim to minimize risks

and costs associated with fishing operations. In this study, we assess risk associated to

piracy activities, which is associated with political instability, lack of governance capacity,

geography, and economic marginalization (Galgano, 2024). Moreover, piracy poses not only

a direct threat to fishers but also a challenge to MPA management authorities, potentially

jeopardizing conservation objectives.

Figure 9 displays global patterns of piracy incidents and fishing efforts. It shows that

regions with lower AIS-detected fishing activity tend to overlap with areas of frequent piracy

events. Conversely, these regions also exhibit higher SAR-detected activity, suggesting that

fishing vessels in piracy-prone areas are more likely to disable their tracking devices to avoid

detection. In terms of proximity to piracy hotspots, piracy appears to deter industrial fishing

rather than encourage it, contradicting the assumption that lower enforcement would attract

more fishing activity. These findings should be considered informative rather than causal.

Future research should focus on establishing causal links between piracy and fishing behavior.

Evaluating these relationships, no significant differences are generally observed between

AIS and SAR data. However, when focusing on the Central Caribbean, the Horn of Africa,

and Indonesia, it becomes clear that these regions represent hotspots for the detection of non-

publicly tracked vessels (Welch et al., 2022). These areas also exhibit the lowest AIS detection

rates, the highest prevalence of piracy events, and the most favorable fishing conditions (Figure

9).
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Figure 9. Piracy, Fishing conditions and Industrial Fishing in MPAs. Figure a) show piracy events, detected
fishing activity using AIS and MPAs, and figure b) show areas with better fishing conditions. Note: Fishing
conditions are calculated based on sea surface temperature and chlorophyll concentration (Axbard, 2016).
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Figure 10 compares vessel detection using AIS and SAR data around MPAs in the Central

Caribbean, the Horn of Africa, and Indonesia. Based on AIS data alone, one might conclude

that fishing activity within MPAs is very low. However, SAR data reveals a significantly

different picture, highlighting undetected activity in these regions.

Table 7 presents the estimates for the Central Caribbean, the Horn of Africa, and Indonesia

regions. No significant evidence is found when using AIS data, whereas significant effects are

detected using SAR data. Despite these differences, the results consistently indicate that

MPAs effectively reduce fishing activity within their boundaries. When generalizing the

analysis, we find no significant effects in MPAs located near regions with a high prevalence

of piracy events, except for the number of vessels detected using SAR data. In contrast, for

MPAs farther from these piracy-prone regions, the effectiveness of MPAs in controlling fishing

activity becomes evident (Table A12). We can notice that areas affected by piracy generate

a deterrent effect on industrial activity, which in itself contributes to the greater effectiveness

of MPAs, and not the opposite, since higher piracy activity could indicate weak institutional

enforcement. Furthermore, these findings emphasize the importance of accurately detecting

fishing activity to ensure clear and transparent policy insights.

Table 7: Regression discontinuity effect of MPAs on fishing activity comparing AIS and SAR
data in the High Piracy and Good Fishing Condition Zones

Vessels detection using
AIS per 1000 km2

Vessels detection using
SAR per 1000 km2

Unseen vessel detection using
SAR per 1000 km2

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Conventional -3.40 -7.73** -4.03 -23.94 -81.97*** 21.68 -66.46** -63.62*** -117.1**
(2.72) (3.01) (6.03) (32.79) (19.91) (30.29) (27.23) (16.71) (55.14)

Bias-corrected -3.19 -2.09 -3.82 -28.33 -48.65** 30.90 -69.44** -63.28*** -127.8**
(2.72) (3.01) (6.03) (32.79) (19.91) (30.29) (27.23) (16.71) (55.14)

Robust -3.19 -2.09 -3.82 -28.33 -48.65* 30.90 -69.44** -63.28** -127.8*
(2.97) (3.98) (6.73) (37.98) (25.68) (34.9) (31.89) (24.82) (65.69)

Bandwidth (m) 13.05 50 12.52 10.15 50 10.29 18.50 50 10.66
Observations 3,709 29,543 3,498 3,709 29,543 3,498 3,709 29,543 3,498

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant at
10%, ** at 5%, and *** at 1% level. Calonico et al. (2014) RD estimate used with optimal bandwidth (columns
1, 5 and 7), fixed 50 kms bandwidth (columns 2, 6 and 8), and 2km donut hole approach (columns 3, 7 and
9). All regressions control for the climatic, physical and biological variables. We present the results based
on a first order local-polynomial. Standard errors in parentheses are based on a nearest neighbor variance
estimator.
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(a) Vessel detection: AIS (b) Vessel detection: SAR

(c) Vessels detected no–publicly tracked: SAR

Figure 10. Regression discontinuity effect of MPAs on fishing activity comparing AIS and SAR data in the
High Piracy and Good Fishing Condition Zones. Source: Authors’ calculations based on data from GFW,
ProtectedSeas and MODIS. Note: The left side of the figure shows the observations outside the MPAs, and the
right side shows the observations inside the MPAs. The observations are binned according to the data-driven
procedure IMSE-optimal quantile-spaced method using polynomial regression. The gray shading represents
the confidence intervals at the 95% confidence level.
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5 Conclusions

This paper evaluates the effectiveness of MPAs in reducing industrial fishing activity on a

global scale. To achieve this, we use data from satellite imagery and AIS to gather information

on fishing effort and the number of publicly and non-publicly tracked vessels at a resolution of

0.1 degrees. We propose a Regression Discontinuity model that addresses selection bias issues

by controlling for observable and unobservable characteristics, allowing for causal estimates.

Using this model, we estimate the reduction in fishing activity within MPAs according to

the level of fishing protection. Additionally, to gain deeper insight into fishers’ motivations,

we examine potential factors explaining changes in fisher compliance, such as the influence

of MPA size, distance to the shore, ports, and piracy events, and the shifts in biological

conditions favorable to fishing.

The results indicate that MPAs have been effective in reducing industrial fishing activity

within their boundaries, particularly in MPAs with higher levels of protection. These findings

hold true when using both satellite imagery and AIS data. Differences arise when focusing

on regions such as Indonesia, the Horn of Africa, and the Central Caribbean, regions charac-

terized as a hotspot for non-publicly tracked vessels (Paolo et al., 2024). We find that there

is no evidence suggesting that higher protection levels lead to better outcomes in terms of re-

ducing the number of both publicly and non-publicly tracked vessels. This unexpected result

is reasonable given that MPAs with stricter fishing restrictions do not significantly reduce

the number of vessels entering but do decrease the total fishing hours conducted within their

boundaries. This suggests that vessels may still enter, but the greater enforcement effective-

ness reduces the amount of time they spend fishing inside. One possible explanation is that

vessels might have stronger incentives to enter highly restricted MPAs, perhaps due to higher

fish stocks.

We also find that, on average, fishing activity increases near the borders of MPAs, pro-

viding empirical evidence of a positive spillover effect6. Although the establishment of new

MPAs typically does not displace activity to surrounding waters (McDonald et al., 2024), it

is known that despite the reduction in the area available for fishing, protected areas gener-

ate increased biomass and greater long-term benefits for fishing activity due to this spillover

effect, which explains the observed increase in activity near the borders (Ziegler et al., 2022,

Cuervo-Sánchez et al., 2018). Additionally, we find that MPAs closer to the shore are more

effective in reducing fishing activity within their boundaries compared to those farther away,

particularly in terms of the number of vessels. These results remain consistent when using

SAR data. According to distance to ports, MPAs located closer to ports show a greater

6As discussed in the results section, this increase may be due to the activity found within the MPAs. However,
the decline inside is significantly greater, leading us to assume that this increase just outside is more likely
driven by the exploitation of the positive spillover effect generated by greater conservation rather than by
compensating for reduced availability due to activity within the MPAs.
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reduction in fishing activity, both when detected through SAR and AIS data. Notably, these

reductions are even larger than those related to shore distance. In terms of MPA size, we ob-

serve that larger MPAs are effective in reducing fishing activity within their boundaries, both

in terms of total fishing efforts and the number of vessels entering. This result suggests that,

despite the greater difficulty in monitoring and enforcement associated with larger MPAs, the

managing institutions have been effective in overseeing these larger areas.

Furthermore, considering that fishermen base their decisions on where to fish according

to biological conditions conducive to fishing (Bos, 2021, Axbard, 2016, Flückiger and Ludwig,

2015), we find that fishing efforts decrease within MPAs with poor fishing conditions or those

that had favorable conditions for only one year—in other words, the less productive MPAs.

In contrast, no significant effects are observed in MPAs with favorable fishing conditions for

at least two of the three years (2017–2019), meaning the more productive MPAs. Finally,

in regions with a history of piracy events, AIS detection of industrial activity is lower, while

SAR detection is higher, suggesting that fishermen may disable their transmitters to avoid

detection by pirates (Welch et al., 2022). We find no significant effects in MPAs near regions

with high piracy prevalence, except for the number of vessels detected using SAR data. In

contrast, for MPAs farther from piracy-prone regions, their effectiveness in controlling fishing

activity is evident.

Some limitations of this study are primarily related to the data. One limitation involves

the measurement of the fishing effort variable, which is reported by GFW as a prediction,

serving as an estimate of the apparent number of fishing hours. Another limitation is as-

sociated with the possible detection of non-fishing vessels in the SAR data, particularly for

non-publicly tracked vessels. However, there is no reason to believe that non-fishing vessels

would have incentives to enter an MPA for activities other than fishing with the motiva-

tion of avoiding detection. The main concern would be an overestimation of activity outside

the MPAs, though we would expect that most non-fishing vessel activity would not occur

within the bandwidths considered for the estimates, which are very close to the protected ar-

eas. An additional limitation relates to compound treatment corrections (Bonilla-Mej́ıa and

Higuera-Mendieta, 2019, Keele and Titiunik, 2015), where overlap between different MPAs

may introduce bias, especially in the estimates by protection level.

Finally, the findings of this article suggest that MPAs are an effective tool in the fight

against overfishing. Proper management and the appropriate use of monitoring and control

tools play a crucial role in the effectiveness of MPAs. Although conservation restricts fishing

activity in the short term, greater conservation creates medium-term incentives that help

preserve and increase the availability of fish stocks for fishing. Additionally, the results of this

article underscore the importance of using increasingly reliable and accurate data to improve

the evaluation of conservation instruments, particularly in the marine context. Misuse or lack

of data availability could lead to erroneous conclusions, potentially undermining conservation
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efforts. Furthermore, the study highlights the importance of effective enforcement in ensuring

compliance with the conservation objectives of MPAs.
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Appendix. Theoretical Economic Model: Optimal Fishing De-

cision in MPAs

Model Assumptions

Consider a model where fishers seek to maximize their profits by choosing the amount of

fishing effort Ei between two possible areas: inside an MPA (Em) and outside the MPAs

(Eo), where Ei = Em + Eo. We assume that the fish stock or biomass size (Bm) is greater

within the MPAs due to protection, which increases fishing productivity in that area.

Fishers incur a unit cost for each fishing effort C(Em, Eo). The unit cost of effort inside

MPAs is higher due to the risk of sanctions. If a fisher is detected engaging in fishing activity

within the MPA, they must pay a fine F . The probability of being caught p(dm) depends on

the distance the vessel enters the protected area, meaning that the deeper they go into the

area, the longer it takes to exit, and consequently, the probability of being caught increases.

Then, the cost of being caught is p(dm)F .

Fisher’s Profit Function

The fisher’s profit function is characterized as:

Π(Em, Eo) = P [Qm(Em, Bm) +Qo(Eo, Bo)]− C(Em, Eo)− p(dm)F

Where P is the market price of fish. Qm(Em, Bm) represents the total fish catch inside

MPAs, while Qo(Eo, Bo) represents catches outside MPAs. The functions Qm(.) and Qo(.)

can be expressed as αBmEm and βBoEo, respectively, indicating the proportion of biomass

captured per unit of effort. The cost function is expressed as C(Em, Eo) = cmEm + coEo.

Finally, F is the fine for being detected, and p(dm) is the probability of being caught, which

increases with dm.

Profit-Maximizing Decision Making

The fisher chooses Em and Eo to maximize Π. Deriving the first-order conditions, we obtain:

PαBm − cm − p(dm)F = 0

PβBo − co = 0

Thus, the fisher will decide to fish within MPAs (Em > 0) if:

PαBm − cm > PβBo − co + p(dm)F
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That is, if the productivity of fishing inside MPAs is high enough to compensate for the

sanction costs.

Model Predictions

Regarding fishing restrictions, we observe that if p(dm) and F are sufficiently large, Em

will tend to zero. In other words, when protection levels are higher, the effectiveness of

MPAs in reducing fishing activity within their boundaries will be greater. However, if Bm is

significantly higher than Bo, fishers will have incentives to enter MPAs illegally, meaning that

the high productivity of MPAs may limit their effectiveness due to the economic incentives

for fishers.

In general terms, if p(dm) increases more rapidly with distance dm, meaning that moni-

toring and enforcement tools are more effective, then the reduction of fishing efforts within

MPAs (Em) will be greater, making protected areas more effective. Thus, the larger size of

MPAs forces vessels to travel greater distances to enter and exit, increasing the likelihood

of capture p(dm). This, in turn, reduces incentives for illegal fishing Em and enhances the

effectiveness of protected areas.
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Appendix. Additional Tables and Figures

Table A1. Descriptive statistics by levels of protection

Levels of protections
Least

restrictive
Less

restrictive
Moderately
restrictive

Heavily
restrictive

Most
restrictive

Outcome variables
Fishing Hours per 1000 km2 1,187 568.6 138.3 59.74 94.45
Vessels detection using AIS per 1000 km2 1,603 728.1 202.4 74.23 97.36
Unique Vessels detection using AIS per 1000 km2 231.3 223.4 66.62 30.35 27.65
Vessels detection using SAR per 1000 km2 141.3 31.5 10.91 2.96 3.78
Unique Vessels detection using SAR per 1000 km2 141.3 31.5 10.91 2.96 3.78
Unseen vessel detection using SAR per millon km2 27.67 8.19 2.38 0.67 2.02
Pr(Unseen vessel detection using SAR) 0.32 0.13 0.04 0.01 0.01

Environmental conditions
Sea surface temperature (°C) 18.95 11.22 10.03 20.34 21.69
Chlorophyll concentration 1.24 1.11 0.54 0.22 0.31
Phytoplankton absorption 1.23 1.62 1.14 0.46 0.64

Grid characteristics
Distance to MPAs boundary (km) 24.58 89.59 105.10 62.23 68.32
Distance to Ports (km) 542.9 335.9 2,018.90 919.80 785
Distance to Shore (km) 114.8 166.6 182.24 190.80 196.13
Distance to Seamounts (m) 185,362 230,799 157,094 137,597 138,393
Distance to P̈ıracy events (m) 834,306 2,311,749 2,488,270 2,008,820 1,889,013
Depth (m) -1,641 -1,658 -1,194 -2,227 -1,861

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: The table presents
the means for observations within each marine protected area according to its level of protection for the period
2017–2019.
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Table A2. Continuous distribution of baseline marine characteristics at MPAs borders by level
of protection

Treatment Control Permutation test
Mean Std.Dev Mean Std.Dev t-test p-value

Levels of protection = Least restrictive
Sea surface temperature (°C) 18.95 9.59 19.30 9.53 0.04 0.25
Chlorophyll concentration 1.24 3.42 0.93 2.40 0.02 0.77
Phytoplankton absorption 1.23 2.28 1.25 1.87 0.03 0.45
Depth (m) -1641.11 1544.88 -1649.77 1289.08 0.02 0.64
Distance to Shore (km) 114.81 115.31 154.44 114.99 0.15 0.05
Distance to Ports (km) 542.87 688.62 350.96 617.97 0.11 0.03
Distance to Seamounts (km) 185.4 285.8 318.2 409.9 0.03 0.5
Distance to Piracy Events (km) 834.3 859.8 1003.7 1091.3 0.02 0.73
Joint test 0.15 0.13
Levels of protection = Less restrictive
Sea surface temperature (°C) 11.22 10.18 13.56 11.05 0.02 0.65
Chlorophyll concentration 1.11 2.11 1.15 2.34 0.06 0.12
Phytoplankton absorption 1.62 1.68 1.87 3.29 0.07 0.08
Depth (m) -1658.04 1158.29 -1621.47 1189.74 0.05 0.19
Distance to Shore (km) 166.65 114.52 166.79 126.65 0.04 0.27
Distance to Ports (km) 335.91 263.88 614.92 708.58 0.07 0.09
Distance to Seamounts (km) 230.8 238.0 397.1 401.9 0.03 0.44
Distance to Piracy Events (km) 311.7 1455.6 2149.2 1684.4 0.03 0.46
Joint test 0.16 0.05
Levels of protection = Moderately restrictive
Sea surface temperature (°C) 10.03 7.87 15.84 11.19 0.05 0.22
Chlorophyll concentration 0.54 1.37 0.78 1.78 0.02 0.65
Phytoplankton absorption 1.14 1.10 1.33 1.92 0.01 0.94
Depth (m) -1194.37 924.47 -1654.91 1124.32 0.06 0.13
Distance to Shore (km) 182.24 126.41 170.74 107.25 0.01 0.96
Distance to Ports (km) 2018.87 1190.27 599.08 977.31 0.02 0.77
Distance to Seamounts (km) 157.1 142.1 262.6 313.3 0.14 0.01
Distance to Piracy Events (km) 2488.3 908.2 1530.8 1533.7 0.06 0.14
Joint test 0.15 0.07
Levels of protection = Heavily restrictive
Sea surface temperature (°C) 20.34 10.89 16.32 12.77 0.09 0.06
Chlorophyll concentration 0.22 0.91 0.71 1.67 0.16 0.00
Phytoplankton absorption 0.46 0.68 1.17 2.19 0.09 0.05
Depth (m) -2227.29 1238.22 -1945.78 1184.41 0.1 0.04
Distance to Shore (km) 190.84 133.62 154.12 109.45 0.18 0.01
Distance to Ports (km) 919.84 560.84 440.27 271.51 0.13 0.01
Distance to Seamounts (km) 137.6 193.3 389.6 550.1 0.04 0.26
Distance to Piracy Events (km) 2008.8 792.8 1784.3 1264.2 0.05 0.21
Joint test 0.18 0.04
Levels of protection = Most restrictive
Sea surface temperature (°C) 21.69 8.81 11.94 11.57 0.03 0.45
Chlorophyll concentration 0.31 1.95 0.67 1.51 0.04 0.27
Phytoplankton absorption 0.64 0.81 1.18 1.70 0.02 0.59
Depth (m) -1860.79 1045.38 -1589.48 1226.09 0.01 0.9
Distance to Shore (km) 196.13 134.86 150.64 115.83 0.09 0.09
Distance to Ports (km) 785.03 693.06 1202.97 1326.65 0.1 0.04
Distance to Seamounts (km) 138.4 208.3 324.0 330.2 0.03 0.43
Distance to Piracy Events (km) 1889.0 964.9 2823.5 2054.8 0.05 0.23
Joint test 0.1 0.3

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Columns 1-4 present the
descriptive statistics of cells of the nearest MPA boundary. The columns 5-6 presents the test statistic and
p-value of the Canay and Kamat (2018) permutation test of continuous distribution of covariates at the cutoff.
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Table A3. AIS Fishing efforts and SAR vessel detections

Fishing efforts (ln)
(1) (2) (3) (4) (5)

Vessel detections SAR (ln) 0.79*** 0.79*** 0.61*** 0.13*** 0.13***
(0.002) (0.002) (0.006) (0.004) (0.017)

Observations 490,095 490,095 103,077 405,913 27,819
Year FE No Yes No Yes Yes
Grid FE No No No Yes Yes
Climate Variables No No Yes No Yes
Grid characteristics No No Yes No No

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant at
10%, ** at 5%, and *** at 1% level. Robust standards errors in parentheses.

Figure A1. Correlation of AIS Fishing Hours and SAR Vessel Detections. Source: Authors’ calculations based
on data from GFW, and ProtectedSeas. The figure presents the relationship between the predicted number of
fishing activity hours using AIS data and the number of vessels detected using SAR data between 2017 and
2019 for the entire sample. Each point represents a grid cell.
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Table A4. Regression discontinuity effect of MPAs on Fishing activity using SAR data by
level of protection

Vessels detection using
SAR per 1000 km2

Unseen vessel detection using
SAR per 1000 km2 Pr(Unseen vessel detection using SAR)

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Level of protection = Least restrictive

Conventional -129.7 -313.3*** -411.4*** -18.69 -57.99*** -88.94*** 0.05** -0.02* -0.02
(80.19) (35.68) (82.02) (14.16) (6.19) (11.45) (0.02) (0.01) (0.03)

Bias-corrected -96.85 -316.2*** -421.7*** -12.25 -51.52*** -89.55*** 0.06** -0.002 -0.02
(80.19) (35.68) (82.02) (14.16) (6.19) (11.45) (0.02) (0.01) (0.03)

Robust -96.85 -316.2*** -421.7*** -12.25 -51.52*** -89.55*** 0.06** -0.002 -0.02
(87.63) (51.72) (96.78) (15.63) (8.99) (13.59) (0.03) (0.02) (0.03)

Bandwidth (km) 8.32 50 16.03 8.92 50 17.42 8.68 50 15.12
Observations 30,616 205,803 28,859 30,616 205,803 28,859 30,616 205,803 28,859

Level of protection = Less restrictive

Conventional -96.47** -169.8*** -229.04*** 0.02 -10.85*** -1.92 0.05*** 0.04*** 0.06***
(45.41) (21.56) (46.85) (4.77) (3.17) (8.21) (0.02) (0.007) (0.02)

Bias-corrected -79.53* -157.1*** -237.7*** 0.90 -1.80 0.41 0.05*** 0.05*** 0.06***
(45.41) (21.56) (46.85) (4.77) (3.17) (8.21) (0.02) (0.007) (0.02)

Robust -79.53 -157.1*** -237.7*** 0.90 -1.80 0.41 0.05*** 0.05*** 0.06***
(51.86) (31.02) (58.3) (5.54) (4.32) (9.46) (0.02) (0.01) (0.02)

Bandwidth (km) 11.02 50 18.41 14.25 50 12.77 10.29 50 16.13
Observations 42,428 237,240 39,827 42,428 237,240 39,827 42,428 237,240 39,827

Level of protection = Moderately restrictive

Conventional -4.55 -63.05** 31.54 -26.36** -21.16*** -30.73* -0.03* -0.05*** -0.03
(48.59) (26.44) (118.5) (10.26) (5.52) (17.28) (0.02) (0.01) (0.03)

Bias-corrected 14.02 -44.22* 68.27 -30.43*** -23.57*** -37.21** -0.03 -0.03*** -0.02
(48.59) (26.44) (118.5) (10.26) (5.52) (17.28) (0.02) (0.01) (0.03)

Robust 14.02 -44.22 68.27 -30.43** -23.57*** -37.21 -0.03 -0.03** -0.02
(53.84) (39.62) (145.8) (12.99) (9.43) (22.84) (0.02) (0.01) (0.04)

Bandwidth (km) 12.24 50 11.83 21.73 50 17.47 13.5 50 11.47
Observations 19,120 119,283 18,092 19,120 119,283 18,092 19,120 119,283 18,092

Level of protection = Heavily restrictive

Conventional -145.5*** -144.7*** -179.5*** -5.27 -9.24** -14.44 -0.04*** -0.05*** -0.08***
(41.44) (23.92) (55.05) (6.53) (4.41) (11.71) (0.02) (0.008) (0.02)

Bias-corrected -141.9*** -161.9*** -186.6*** -3.96 -7.49* -14.29 -0.04*** -0.05*** -0.08***
(41.44) (23.92) (55.05) (6.53) (4.41) (11.71) (0.02) (0.008) (0.02)

Robust -141.9*** -161.9*** -186.6*** -3.96 -7.49 -14.29 -0.04** -0.05*** -0.08***
(48.56) (34.87) (67.26) (7.46) (6.31) (13.88) (0.02) (0.01) (0.03)

Bandwidth (km) 15.19 50 19.74 20.41 50 16.29 16.01 50 13.55
Observations 15,927 135,959 15,154 15,927 135,959 15,154 15,927 135,959 15,154

Level of protection = Most restrictive

Conventional -148.2*** -141.4*** -164.5*** -28.18** -24.94*** -38.44** -0.12*** -0.14*** -0.14***
(34.52) (20.77) (40.99) (13.45) (6.02) (16.47) (0.02) (0.009) (0.02)

Bias-corrected -148.6*** -171.2*** -175.2*** -31.1** -20.31*** -43.46*** -0.11*** -0.13*** -0.14***
(34.52) (20.77) (40.99) (13.45) (6.02) (16.47) (0.02) (0.009) (0.02)

Robust -148.6*** -171.2*** -175.2*** -31.1* -20.31** -43.46** -0.11*** -0.13*** -0.14***
(42.65) (32.85) (50.92) (16.96) (9.68) (20.09) (0.02) (0.01) (0.03)

Bandwidth (km) 21.89 50 19.52 14.9 50 11.28 11.53 50 13.38
Observations 21,086 213,497 20,252 21,086 213,497 20,252 21,086 213,497 20,252

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant at
10%, ** at 5%, and *** at 1% level. Calonico et al. (2014) RD estimate used with optimal bandwidth (columns
1, 4 and 7), fixed 50 kms bandwidth (columns 2, 5 and 8), and 2km donut hole approach (columns 3, 6 and
9). All regressions control for the climatic, physical and biological variables. We present the results based
on a first order local-polynomial. Standard errors in parentheses are based on a nearest neighbor variance
estimator.
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Table A5. Regression discontinuity effect of MPAs on fishing activity by proximity to shore
using AIS data

Fishing Hours per 1000 km2
Vessels detection using

AIS per 1000 km2
Optimal

Bandwidth
Fixed

Bandwidth
Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

(1) (2) (3) (4) (5) (6)

Distance to Shore <147km

Conventional -349.7 -937.3*** -558.8 -153.3** -396.6*** -289.4***
(325.9) (165.6) (387.1) (70.84) (28.47) (85.85)

Bias-corrected -261.4 -406** -439.9 -128.2* -299.8*** -256.6***
(325.9) (165.6) (387.1) (70.84) (28.47) (85.85)

Robust -261.4 -406 -439.9 -128.2 -299.8*** -256.6***
(379.6) (247.2) (461.4) (78.09) (41.93) (98.82)

Bandwidth (km) 14.40 50 13.35 7.91 50 12.38
Observations 102,049 444,081 96,127 102,049 444,081 96,127

Distance to Shore >147km

Conventional -86.09 -189.7** -250.5 -8.24 -24.77*** -10.74
(137.01) (78.77) (251.8) (9.26) (4.89) (13.34)

Bias-corrected -65.85 -90.35 -255.4 -5.32 -11.94** -7.72
(137.01) (78.77) (251.8) (9.26) (4.89) (13.34)

Robust -65.85 -90.35 -255.4 -5.32 -11.94* -7.72
(169.8) (116.3) (315.5) (10.94) (7.04) (16.09)

Bandwidth (km) 17.63 50 13.14 13.51 50 13.26
Observations 27,145 467,788 26,074 27,145 467,788 26,074

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant at
10%, ** at 5%, and *** at 1% level. The 147 km represents the median of the distribution of distance to
the shore. Calonico et al. (2014) RD estimate used with optimal bandwidth (columns 1 and 4), fixed 50 kms
bandwidth (columns 2 and 5), and 2km donut hole approach (columns 3 and 6). All regressions control for
the climatic, physical and biological variables. We present the results based on a first order local-polynomial.
Standard errors in parentheses are based on a nearest neighbor variance estimator.
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Table A6. Regression discontinuity effect of MPAs on fishing activity by proximity to shore
using SAR data

Vessels detection using
SAR per 1000 km2

Unseen vessel detection using
SAR per millon km2

Pr(Unseen vessel detection
using SAR)

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Distance to Shore <147km

Conventional -38.18 -191.9*** -231.1*** -20.53*** -23.47*** -28.67*** 0.04*** 0.002 0.04***
(43.80) (16.15) (33.67) (4.93) (2.65) (5.54) (0.01) (0.005) (0.02)

Bias-corrected -21.46 -185.5*** -238.8*** -19.37*** -20.45*** -29.24*** 0.05*** 0.02*** 0.05***
(43.80) (16.15) (33.67) (4.93) (2.65) (5.54) (0.01) (0.005) (0.02)

Robust -21.46 -185.5*** -238.8*** -19.37*** -20.45*** -29.24*** 0.05*** 0.02*** 0.05***
(47.64) (23.67) (40.77) (5.74) (3.99) (6.94) (0.01) (0.008) (0.02)

Bandwidth (km) 13.62 50 20.08 15.47 50 18.23 8.82 50 12.31
Observations 102,049 444,081 96,127 102,049 444,081 96,127 102,049 444,081 96,127

Distance to Shore >147km

Conventional -1.01 -1.89 -2.17 -0.1 -0.19 0.68 0.02* 0.01** 0.03**
(1.73) (1.19) (2.83) (1.06) (0.71) (1.75) (0.01) (0.006) (0.02)

Bias-corrected -0.71 -1.21 -1.98 -0.198 -0.01 0.72 0.02** 0.02*** 0.04***
(1.73) (1.19) (2.83) (1.06) (0.71) (1.75) (0.01) (0.006) (0.02)

Robust -0.71 -1.21 -1.98 -0.198 -0.01 0.72 0.02* 0.02* 0.04**
(2.00) (1.63) (3.44) (1.22) (1.03) (2.07) (0.01) (0.008) (0.02)

Bandwidth (km) 17.37 50 16.21 21.89 50 18.4 15.63 50 14.69
Observations 27,145 467,788 26,074 27,145 467,788 26,074 27,145 467,788 26,074

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant at
10%, ** at 5%, and *** at 1% level. The 147 km represents the median of the distribution of distance to the
shore. Calonico et al. (2014) RD estimate used with optimal bandwidth (columns 1, 4 and 7), fixed 50 kms
bandwidth (columns 2, 5 and 8), and 2km donut hole approach (columns 3, 6 and 9). All regressions control for
the climatic, physical and biological variables. We present the results based on a first order local-polynomial.
Standard errors in parentheses are based on a nearest neighbor variance estimator.

44

https://globalfishingwatch.org/
https://navigatormap.org/
https://oceandata.sci.gsfc.nasa.gov/opendap/MODISA/L3SMI/


Table A7. Regression discontinuity effect of MPAs on fishing activity by proximity to ports
using AIS data

Fishing Hours per 1000 km2
Vessels detection using

AIS per 1000 km2
Optimal

Bandwidth
Fixed

Bandwidth
Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

(1) (2) (3) (4) (5) (6)

Distance to Ports <334km

Conventional -427.4 -976.2*** -628.7 -237.5*** -433.2*** -327.9***
(345.1) (180.3) (410.3) (72.14) (30.29) (87.8)

Bias-corrected -343.8 -446.8** -519.7 -213.5*** -343.9*** -293.9***
(345.1) (180.3) (410.3) (72.14) (30.29) (87.8)

Robust -343.8 -446.8* -519.7 -213.5*** -343.9*** -293.9***
(406.5) (268.3) (491.4) (80.07) (44.48) (101.3)

Bandwidth (km) 14.96 50 13.64 8.46 50 12.98
Observations 91,423 496,802 85,949 91,423 496,802 85,949

Distance to Ports >334km

Conventional -12.99 -73.61*** 15.52 0.89 -5.87*** -5.78*
(25.19) (14.52) (34.75) (3.26) (1.42) (2.98)

Bias-corrected -4.79 -39.96*** 26.48 2.04 -0.55 -5.55*
(25.19) (14.52) (34.75) (3.26) (1.42) (2.98)

Robust -4.79 -39.96** 26.48 2.04 -0.55 -5.55
(30.53) (18.60) (40.08) (3.86) (2.08) (3.60)

Bandwidth (km) 11.99 50 8.81 9.97 50 14.72
Observations 37,771 415,067 36,252 37,771 415,067 36,252

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant at
10%, ** at 5%, and *** at 1% level. The 334 km represents the median of the distribution of distance to
the ports. Calonico et al. (2014) RD estimate used with optimal bandwidth (columns 1 and 4), fixed 50 kms
bandwidth (columns 2 and 5), and 2km donut hole approach (columns 3 and 6). All regressions control for
the climatic, physical and biological variables. We present the results based on a first order local-polynomial.
Standard errors in parentheses are based on a nearest neighbor variance estimator.
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Table A8. Regression discontinuity effect of MPAs on fishing activity by proximity to ports
using SAR data

Vessels detection using
SAR per 1000 km2

Unseen vessel detection using
SAR per millon km2

Pr(Unseen vessel detection
using SAR)

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Distance to Ports <334km

Conventional -68.00 -211.4*** -264.1*** -22.51*** -25.79*** -33.35*** 0.06*** 0.02*** 0.06***
(46.18) (17.52) (38.47) (5.28) (2.88) (6.20) (0.01) (0.006) (0.02)

Bias-corrected -51.00 -209.9*** -277.4*** -21.2*** -22.59*** -34.5*** 0.06*** 0.04*** 0.06***
(46.18) (17.52) (38.47) (5.28) (2.88) (6.20) (0.01) (0.006) (0.02)

Robust -51.00 -209.9*** -277.4*** -21.2*** -22.59*** -34.5*** 0.06*** 0.04*** 0.06***
(50.41) (25.57) (45.82) (6.16) (4.31) (7.73) (0.01) (0.008) (0.02)

Bandwidth (km) 6.33 50 18.38 15.62 50 17.35 8.74 50 13.11
Observations 91,423 496,802 85,949 91,423 496,802 85,949 91,423 496,802 85,949

Distance to Ports >334km

Conventional 0.12 0.16** 0.28 -0.03 -0.07* 0.12 -0.002 -0.002 0.003
(0.12) (0.07) (0.20) (0.07) (0.04) (0.12) (0.003) (0.002) (0.006)

Bias-corrected 0.1 0.16** 0.35* -0.03 -0.06 0.16 -0.002 -0.003 0.005
(0.12) (0.07) (0.20) (0.07) (0.04) (0.12) (0.003) (0.002) (0.006)

Robust 0.1 0.16 0.35 -0.03 -0.06 0.16 -0.002 -0.003 0.005
(0.14) (0.11) (0.23) (0.08) (0.05) (0.14) (0.004) (0.003) (0.007)

Bandwidth (km) 11.59 50 11.89 13.71 50 10.77 13.75 50 11.19
Observations 37,771 415,067 36,252 37,771 415,067 36,252 37,771 415,067 36,252

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant at
10%, ** at 5%, and *** at 1% level. The 334 km represents the median of the distribution of distance to the
ports. Calonico et al. (2014) RD estimate used with optimal bandwidth (columns 1, 4 and 7), fixed 50 kms
bandwidth (columns 2, 5 and 8), and 2km donut hole approach (columns 3, 6 and 9). All regressions control for
the climatic, physical and biological variables. We present the results based on a first order local-polynomial.
Standard errors in parentheses are based on a nearest neighbor variance estimator.
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Table A9. Regression discontinuity effect of MPAs on fishing activity by MPA size using AIS
data

Fishing Hours per 1000 km2
Vessels detection using

AIS per 1000 km2
Optimal

Bandwidth
Fixed

Bandwidth
Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

(1) (2) (3) (4) (5) (6)

MPA Size <27,443 km2

Conventional 39.71 -256.9 -1570.4*** 65.58 -148.8*** -56.98
(510.2) (243.2) (585.5) (68.04) (30.52) (82.28)

Bias-corrected 149.3 19.63 -1759.7*** 90.90 -29.95 -27.41
(510.2) (243.2) (585.5) (68.04) (30.52) (82.28)

Robust 149.3 19.63 -1759.7** 90.90 -29.95 -27.41
(604.4) (348.1) (709.9) (76.54) (44.43) (91.71)

Bandwidth (km) 10.38 50 11.39 8.79 50 12.75
Observations 49,423 357,180 45,858 49,423 357,180 45,858

MPA Size >27,443 km2

Conventional -901.0*** -1620.2*** -672.9 -350.3*** -553.5*** -461.4***
(296.8) (163.5) (520.3) (80.38) (36.33) (110.6)

Bias-corrected -774.5*** -974.2*** -452.5 -320.3*** -486.7*** -429.6***
(296.8) (163.5) (520.3) (80.38) (36.33) (110.6)

Robust -774.5** -974.2*** -452.5 -320.3*** -486.7*** -429.6***
(349.3) (243.5) (598) (91.97) (53.09) (131.6)

Bandwidth (km) 16.64 50 11.3 9.53 50 12.67
Observations 79,771 554,689 76,343 79,771 554,689 76,343

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant at
10%, ** at 5%, and *** at 1% level. The 27,443 km2 represents the median of the distribution of MPA size.
Calonico et al. (2014) RD estimate used with optimal bandwidth (columns 1, and 4), fixed 50 kms bandwidth
(columns 2, and 5), and 2km donut hole approach (columns 3, and 6). All regressions control for the climatic,
physical and biological variables. We present the results based on a first order local-polynomial. Standard
errors in parentheses are based on a nearest neighbor variance estimator.
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Table A10. Regression discontinuity effect of MPAs on fishing activity by MPA size using
SAR data

Vessels detection using
SAR per 1000 km2

Unseen vessel detection using
SAR per millon km2

Pr(Unseen vessel detection
using SAR)

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

Optimal
Bandwidth

Fixed
Bandwidth

Donut
hole

(1) (2) (3) (4) (5) (6) (7) (8) (9)

MPA Size <27,443 km2

Conventional -62.42 -47.15** -159.7** -38.16*** -30.67*** -52.02*** 0.04*** 0.02*** 0.06
(39.25) (23.8) (70.66) (8.70) (4.34) (12.33) (0.01) (0.008) (0.02)

Bias-corrected -55.18 -33.04 -175.6** -37.82*** -33.24*** -57.22*** 0.05*** 0.03*** 0.07
(39.25) (23.8) (70.66) (8.70) (4.34) (12.33) (0.01) (0.008) (0.02)

Robust -55.18 -33.04 -175.6** -37.82*** -33.24*** -57.22*** 0.05*** 0.03*** 0.07
(44.75) (33.25) (86.02) (10.57) (6.50) (15) (0.02) (0.01) (0.02)

Bandwidth (km) 14.97 50 14.06 13.52 50 13.29 9.85 50 12.04
Observations 49,423 357,180 45,858 49,423 357,180 45,858 49,423 357,180 45,858

MPA Size >27,443 km2

Conventional -128.9*** -295.5*** -262.9*** -17.59*** -28.17*** -27.14*** -0.09*** -0.11*** -0.1***
(44.06) (16.03) (46.96) (4.61) (2.22) (5.19) (0.01) (0.006) (0.02)

Bias-corrected -112.1** -306.9*** -252.9*** -15.49*** -21.51*** -25.72*** -0.09*** -0.09*** -0.09***
(44.06) (16.03) (46.96) (4.61) (2.22) (5.19) (0.01) (0.006) (0.02)

Robust -112.1** -306.9*** -252.9*** -15.49*** -21.51*** -25.72*** -0.09*** -0.09*** -0.09***
(49.14) (23.40) (57.69) (5.18) (3.13) (6.19) (0.02) (0.008) (0.02)

Bandwidth (km) 5.98 50 12.53 8.23 50 16.15 9.87 50 12.83
Observations 79,771 554,689 76,343 79,771 554,689 76,343 79,771 554,689 76,343

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant
at 10%, ** at 5%, and *** at 1% level. The 27,443 km2 represents the median of the distribution of MPA
size. Calonico et al. (2014) RD estimate used with optimal bandwidth (columns 1, 4 and 7), fixed 50 kms
bandwidth (columns 2, 5 and 8), and 2km donut hole approach (columns 3, 6 and 9). All regressions control for
the climatic, physical and biological variables. We present the results based on a first order local-polynomial.
Standard errors in parentheses are based on a nearest neighbor variance estimator.
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Table A11. Regression discontinuity effect of MPAs on fishing activity by fishing conditions

Fishing Hours per
1000 km2

Vessels detection
using AIS

per 1000 km2

Vessels detection
using SAR

per 1000 km2

Unseen vessel
detection using SAR

per 1000 km2

Pr(Unseen vessel
detection

using SAR)
(1) (2) (3) (4) (5)

No Good Fishing Condition

Conventional -1032.2*** -378.2*** -193.9*** -24.96*** -0.02***
(137.9) (24.75) (13.63) (2.16) (0.005)

Bias-corrected -520.2*** -301.1*** -191.5*** -21.25*** 0.004
(137.9) (24.75) (13.63) (2.16) (0.005)

Robust -520.2** -301.1*** -191.5*** -21.25*** 0.004
(210.6) (36.63) (20.51) (3.31) (0.007)

Bandwidth (km) 50 50 50 50 50
Observations 879,680 879,680 879,680 879,680 879,680

Fishing Condition yr=1

Conventional -106.7 -3.55 -105.4*** -91.25*** -0.03
(66.63) (8.49) (37.79) (21.71) (0.04)

Bias-corrected -190.5*** -2.35 -101.8*** -92.07*** -0.04
(66.63) (8.49) (37.79) (21.71) (0.04)

Robust -190.5 -2.35 -101.8*** -92.07*** -0.04
(117.2) (12.12) (35.88) (30.57) (0.05)

Bandwidth (km) 50 50 50 50 50
Observations 28,287 28,287 28,287 28,287 28,287

Fishing Condition yr>=2

Conventional 240.9 -17.67 54.72 -75.77 0.05
(178.9) (22.77) (74.38) (62.29) (0.09)

Bias-corrected 191.6 -22.75 84.41 -18.58 0.08
(178.9) (22.77) (74.38) (62.29) (0.09)

Robust 191.6 -22.75 84.41 -18.58 0.08
(196.8) (30.31) (90.08) (88.43) (0.13)

Bandwidth (km) 50 50 50 50 50
Observations 3,902 3,902 3,902 3,902 3,902

Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: * is significant
at 10%, ** at 5%, and *** at 1% level. The fishing condition variable is expressed as the number of years
that the grid has had good fishing conditions according to the formula proposed by Axbard (2016). Calonico
et al. (2014) RD estimate used with fixed 50 kms bandwidth. All regressions control for the climatic, physical
and biological variables. We present the results based on a first order local-polynomial. Standard errors in
parentheses are based on a nearest neighbor variance estimator.
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Table A12. Regression discontinuity effect of MPAs on fishing activity by proximity to piracy
events

Fishing Hours per
1000 km2

Vessels detection
using AIS

per 1000 km2

Vessels detection
using SAR

per 1000 km2

Unseen vessel
detection using SAR

per 1000 km2

Pr(Unseen vessel
detection

using SAR)
(1) (2) (3) (4) (5)

Piracy Event <5km
Conventional -1968.7 411.1 -2310.8** -66.65 0.07

(5576) (416) (1158.5) (209.9) (0.13)
Bias-corrected -3716.7 457 -2264.7* 33.17 -0.002

(5576) (416) (1158.5) (209.9) (0.13)
Robust -3716.7 457 -2264.7 33.17 -0.002

(8113) (563.7) (1575.8) (330.5) (0.2)

Bandwidth (km) 50 50 50 50 50
Observations 1,247 1,247 1,247 1,247 1,247

Piracy Event >5km
Conventional -1007*** -368.3*** -187.9*** -25.83*** -0.02***

(133.2) (23.95) (13.08) (2.18) (0.005)
Bias-corrected -517.1*** -294.4*** -186.1*** -22.15*** 0.004

(133.2) (23.95) (13.08) (2.18) (0.005)
Robust -517.1** -294.4*** -186.1*** -22.15*** 0.004

(203.1) (35.47) (19.64) (3.32) (0.007)

Bandwidth (km) 50 50 50 50 50
Observations 910,622 910,622 910,622 910,622 910,622

Source: Authors’ calculations based on data from GFW, ProtectedSeas, Anti-shipping Activity Messages
(ASAM) database and MODIS. Note: * is significant at 10%, ** at 5%, and *** at 1% level. Calonico et al.
(2014) RD estimate used with fixed 50 kms bandwidth. All regressions control for the climatic, physical
and biological variables. We present the results based on a first order local-polynomial. Standard errors in
parentheses are based on a nearest neighbor variance estimator.
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(a) Least restrictive (b) Less restrictive

(c) Moderately restrictive (d) Heavily restrictive

(e) Most restrictive

Figure A2. Regression discontinuity effect of MPAs on vessel detections using AIS data by levels of protection.
Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: The left side of the
figure shows the observations outside the MPAs, and the right side shows the observations inside the MPAs.
The observations are binned according to the data-driven procedure IMSE-optimal quantile-spaced method
using polynomial regression. The gray shading represents the confidence intervals at the 95% confidence level.
All graphs present the estimates following the donut hole approach with a 2km exclusion zone.
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(a) Least restrictive (b) Less restrictive

(c) Moderately restrictive (d) Heavily restrictive

(e) Most restrictive

Figure A3. Regression discontinuity effect of MPAs on vessel detections using SAR data by levels of protec-
tion.Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: The left side
of the figure shows the observations outside the MPAs, and the right side shows the observations inside the
MPAs. The observations are binned according to the data-driven procedure IMSE-optimal quantile-spaced
method using polynomial regression. The gray shading represents the confidence intervals at the 95% confi-
dence level. All graphs present the estimates following the donut hole approach with a 2km exclusion zone.
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(a) Least restrictive (b) Less restrictive

(c) Moderately restrictive (d) Heavily restrictive

(e) Most restrictive

Figure A4. Regression discontinuity effect of MPAs on vessel detctions no-publicly tracked by levels of pro-
tection. Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note: The left
side of the figure shows the observations outside the MPAs, and the right side shows the observations inside
the MPAs. The observations are binned according to the data-driven procedure IMSE-optimal quantile-spaced
method using polynomial regression. The gray shading represents the confidence intervals at the 95% confi-
dence level. All graphs present the estimates following the donut hole approach with a 2km exclusion zone.
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(a) Least restrictive (b) Less restrictive

(c) Moderately restrictive (d) Heavily restrictive

(e) Most restrictive

Figure A5. Regression discontinuity effect of MPAs on probability of vessel detections no-publicly tracked by
levels of protection. Source: Authors’ calculations based on data from GFW, ProtectedSeas and MODIS. Note:
The left side of the figure shows the observations outside the MPAs, and the right side shows the observations
inside the MPAs. The observations are binned according to the data-driven procedure IMSE-optimal quantile-
spaced method using polynomial regression. The gray shading represents the confidence intervals at the 95%
confidence level. All graphs present the estimates following the donut hole approach with a 2km exclusion
zone.

54

https://globalfishingwatch.org/
https://navigatormap.org/
https://oceandata.sci.gsfc.nasa.gov/opendap/MODISA/L3SMI/


−1000

0

1000

0 10 20 30 40 50
Cut off (km)

C
oe

ffi
ci

en
t

(a) Fishing hours

−300

−200

−100

0

100

0 10 20 30 40 50
Cut off (km)

C
oe

ffi
ci

en
t

(b) Vessels detected using AIS

−200

−100

0

100

0 10 20 30 40 50
Cut off (km)

C
oe

ffi
ci

en
t

(c) Vessels detected using SAR

Figure A6. Bandwidth Sensitivity. Source: Authors’ calculations based on data from GFW, ProtectedSeas
and MODIS. Note: Each graph presents the estimates based on the Calonico et al. (2014) RD estimators with
a fixed bandwidth ranging from 5 to 50 km in increments of 5 km. All regressions control for the climatic,
physical and biological variables. We present the results based on a first order local-polynomial. Standard
errors are based on a nearest neighbor variance estimator.
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Figure A7. Placebo threshold test for RD effects. Source: Authors’ calculations based on data from GFW,
ProtectedSeas and MODIS. Note: Each graph presents the estimates with a placebo for the boundary moving
along 50 km on both sides of the MPA borders, with an increment of 5 km, based on the Calonico et al.
(2014) RD estimators with a fixed bandwidth of 50 km. All regressions control for the climatic, physical and
biological variables. We present the results based on a first order local-polynomial. Standard errors are based
on a nearest neighbor variance estimator.

56

https://globalfishingwatch.org/
https://navigatormap.org/
https://oceandata.sci.gsfc.nasa.gov/opendap/MODISA/L3SMI/

	Introduction
	Data
	AIS Fishing Activity Data
	SAR Fishing Activity Data
	Comparing AIS Fishing Efforts and SAR vessels detections
	Marine Protected Areas
	Climate and Biological Variables
	Descriptive Statistics

	Empirical Model
	Results
	Law Enforcement and Marine Conservation
	Piracy and Fishing Conditions zones


	Conclusions

